What are Lenticular Displays?
While 3-D technology is impressive, some people still want a solution that doesn't require them to wear glasses. There have been several attempts at creating a display capable of projecting images into a three-dimensional space. Some involve lasers, some project images onto a fine mist or onto artificial smoke, but these methods aren't that common or practical.
There's one way to create three-dimensional images that you may see in places like sports arenas or in a hotel during a big conference. This method relies on a display coated with a lenticular film. Lenticules are tiny lenses on the base side of a special film. The screen displays two sets of the same image. The lenses direct the light from the images to your eyes -- each eye sees only one image. Your brain puts the images together and you interpret it as a three-dimensional image.
This technology requires content providers to create special images for the effect to work. They must interlace the two sets of images together. If you were to try and view the video feed on a normal screen, you would see a blurry double image.
Another problem with lenticular displays is that it depends upon the audience being in a sweet spot to get the 3-D effect. If you were to move to the left or right from one of these sweet spots, the image on the screen would begin to blur. Once you moved from one sweet spot to another, the image would return to a cohesive picture. Future televisions may include a camera that tracks your position. The television will be able to adjust the image so that you're always in a sweet spot. Whether this will work for multiple viewers of the same screen remains to be seen.
Some people experience a feeling similar to motion sickness after watching a lenticular display for more than a few minutes. That's probably because your eyes have to do extra work as they deal with the discrepancy between focus and convergence.
What is a Parallax Barrier?
A parallax barrier is a device placed in front of an image source, such as a liquid crystal display, to allow it to show a stereoscopic image or multiscopic image without the need for the viewer to wear 3D glasses. Placed in front of the normal LCD, it consists of a layer of material with a series of precision slits, allowing each eye to see a different set of pixels, so creating a sense of depth through parallax in an effect similar to what lenticular printing produces for printed products. A disadvantage of the technology is that the viewer must be positioned in a well-defined spot to experience the 3D effect. Another disadvantage is that the effective horizontal pixel count viewable for each eye is reduced by one half.
While 3-D technology is impressive, some people still want a solution that doesn't require them to wear glasses. There have been several attempts at creating a display capable of projecting images into a three-dimensional space. Some involve lasers, some project images onto a fine mist or onto artificial smoke, but these methods aren't that common or practical.
There's one way to create three-dimensional images that you may see in places like sports arenas or in a hotel during a big conference. This method relies on a display coated with a lenticular film. Lenticules are tiny lenses on the base side of a special film. The screen displays two sets of the same image. The lenses direct the light from the images to your eyes -- each eye sees only one image. Your brain puts the images together and you interpret it as a three-dimensional image.
This technology requires content providers to create special images for the effect to work. They must interlace the two sets of images together. If you were to try and view the video feed on a normal screen, you would see a blurry double image.
Another problem with lenticular displays is that it depends upon the audience being in a sweet spot to get the 3-D effect. If you were to move to the left or right from one of these sweet spots, the image on the screen would begin to blur. Once you moved from one sweet spot to another, the image would return to a cohesive picture. Future televisions may include a camera that tracks your position. The television will be able to adjust the image so that you're always in a sweet spot. Whether this will work for multiple viewers of the same screen remains to be seen.
Some people experience a feeling similar to motion sickness after watching a lenticular display for more than a few minutes. That's probably because your eyes have to do extra work as they deal with the discrepancy between focus and convergence.
What is a Parallax Barrier?
A parallax barrier is a device placed in front of an image source, such as a liquid crystal display, to allow it to show a stereoscopic image or multiscopic image without the need for the viewer to wear 3D glasses. Placed in front of the normal LCD, it consists of a layer of material with a series of precision slits, allowing each eye to see a different set of pixels, so creating a sense of depth through parallax in an effect similar to what lenticular printing produces for printed products. A disadvantage of the technology is that the viewer must be positioned in a well-defined spot to experience the 3D effect. Another disadvantage is that the effective horizontal pixel count viewable for each eye is reduced by one half.
No comments:
Post a Comment